

Bestimmung von Kupfer komplexometrisch

Beschreibung

Die Bestimmung von Kupfer in sauren Lösungen wie z.B. Galvanikbädern erfolgt durch Titration mit dem Natriumsalz der Ethylendiamintetraessigsäure (EDTA). Die Detektion erfolgt mit einer Cu-Elektrode. Andere komplexierbare Metalle werden mit titriert.

Für sehr niedrige Konzentrationen können stärker verdünnte EDTA-Lösungen (z. B. 0,05 oder 0,01 mol/L) verwendet werden.

Es wird nur Cu²⁺ nachgewiesen. Wenn die Probe Cu⁺ enthält, muss sie durch Kochen mit HNO₃ oxidiert werden.

Die Berechnung erfolgt in g_{Cu}/L.

Geräte

Titrator	TL 5000, TL 7000, TL 7750, TL 7800
Elektrode	Cu 1100
Kabel	L1A
Bezugselektrode	B 2920+
Kabel	L1N
Rührer	Magnetrührer TM 235 oder ähnliche
Laborgeräte	Becherglas 150 ml
	Magnetrührstab 30 mm

Reagenzien

1	Na ₂ EDTA 0.1 mol/l		
2	Ammoniakwasser 25%		
3	Ammoniumchlorid		
4	Destilliertes Wasser		
5	Elektrolytlösung L300		
	Alle Reagenzien sollten mindestens analysenrein sein		

Durchführung der Titration

Reagenzien

EDTA 0,1 mol/L

0,1 mol/L EDTA-Lösung ist als gebrauchsfertige Lösung erhältlich.

Die Titerbestimmung der EDTA - Lösung erfolgt wie in der Applikationsschrift "Titerbestimmung von EDTA" beschrieben.

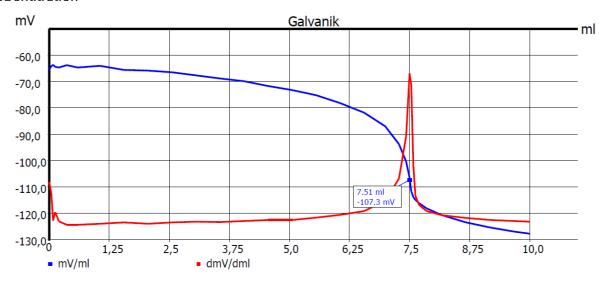
Pufferlösung pH 10

54,0g Ammoniumchlorid werden in etwas Wasser gelöst, 350ml Ammoniaklösung 25% zugegeben und mit Wasser auf 1,0l aufgefüllt.

Reinigung der Elektroden

Die Elektroden werden mit destilliertem Wasser gereinigt. Die Cu 1100 wird sauber und trocken gelagert, für die Lagerung der Bezugselektrode eignet sich die Elektrolytlösung L3004.

Probenvorbereitung


Die Probe wird in ein 150-ml-Becherglas gegeben und 5 ml (oder etwas mehr) Pufferlösung pH 10 zugegeben, bis sich der blaue Tetraamminkupfer(II)-Komplex gebildet hat (es sollte kein ausgefallenes Cu(OH)₂ vorhanden sein). Die Mischung wird mit entionisiertem Wasser auf 80 - 100 ml aufgefüllt und mit EDTA 0,1 mol / L (oder einer niedrigeren Konzentration bei sehr geringem Cu-Gehalt) titriert. Der Verbrauch sollte bei etwa 5 - 15 ml liegen.

Die erforderliche Probenmenge kann nach dieser Faustregel abgeschätzt werden:

$$V(mL) = \frac{635 * Titer \left[\frac{mol}{L}\right]}{erwarteter Cu - Gehalt \left[g/L\right]}$$

Titrationsparameter

Probentitration

Standardmethode	Total hardness		
Methodentyp	Automatische		
, ,	Titration		
Modus	Dynamisch		
Messwert	mV		
Messgeschwindigkeit /	Benutzerdefiniert	Min. Wartezeit	5 s
Drift		Max. Wartezeit	25 s
		Messzeit	4 s
		Drift	10 mV/min
Startwartezeit	5 s		
Dynamik	Benutzerdefiniert	Max. Schrittweite	0.5 ml
		Steigung bei max. ml	10
		Min. Schrittweite	0.05 ml
		Steigung bei min. ml	70
Dämpfung	keine	Titrationsrichtung	fallend
Vortitration	aus	Wartezeit	0 s
Endwert	Aus		
EQ	An(1)	Steigungswert	120
Max. Titrationsvolumen	20 ml		
Dosiergeschwindigkeit	100%	Füllgeschwindigkeit	30 s

Berechnung:

Result [g/l] =	(EQ1-B)*T*M*F1
	W*F2

В	0	Blindwert
EQ1		Verbrauch des Titrationsmittels am ersten EQ
Т	WA	Exakte Konzentration des Titrationsmittels
М	63,55	Molmasse von Cu
V	man	Probenvolumen [ml]
F1	1	Umrechnungsfaktor 1
F2	1	Umrechnungsfaktor 2

Fragen? Bitte kontaktieren Sie unser Applikationsteam:

Xylem Analytics Germany Sales GmbH & Co. KG, SI Analytics Hattenbergstraße 10 D-55122 Mainz, Germany

Telefon: + 49 6131 894 5126 Fax: + 49 6131 894 5101 E-Mail: titration@si-analytics.com

Xylem Analytics Germany Sales GmbH & Co. KG · Hattenbergstr. 10 · D-55122 Mainz · Germany Telefon: +49 6131.894. 5111 · E-Mail: Info.si-analytics@Xyleminc.com · **www.si-analytics.com**

Alle Namen sind eingetragene Handelsnamen oder Warenzeichen der Xylem Inc. oder eines seiner Tochterunternehmen. Technische Änderungen vorbehalten.
© 2018 Xylem Analytics Germany Sales GmbH & Co. KG.